MATLAB File Help: cv.SuperpixelSLIC Index
cv.SuperpixelSLIC

Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels algorithm

As described in [Achanta2012].

SLIC (Simple Linear Iterative Clustering) clusters pixels using pixel channels and image plane space to efficiently generate compact, nearly uniform superpixels. The simplicity of approach makes it extremely easy to use a lone parameter specifies the number of superpixels and the efficiency of the algorithm makes it very practical.

References

[Achanta2012]:

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk. "SLIC superpixels compared to state-of-the-art superpixel methods". IEEE Trans. Pattern Anal. Mach. Intell., 34(11):2274-2282, nov 2012.

[epfl2010]:

"SLIC Superpixels" Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk. EPFL Technical Report no. 149300, June 2010.

See also
Class Details
Superclasses handle
Sealed false
Construct on load false
Constructor Summary
SuperpixelSLIC Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels 
Property Summary
id Object ID 
Method Summary
  addlistener Add listener for event. 
  clear Clears the algorithm state 
  delete Destructor 
  empty Checks if detector object is empty. 
  enforceLabelConnectivity Enforce label connectivity 
  eq == (EQ) Test handle equality. 
  findobj Find objects matching specified conditions. 
  findprop Find property of MATLAB handle object. 
  ge >= (GE) Greater than or equal relation for handles. 
  getDefaultName Returns the algorithm string identifier 
  getLabelContourMask Returns the mask of the superpixel segmentation stored in object 
  getLabels Returns the segmentation labeling of the image 
  getNumberOfSuperpixels Calculates the actual amount of superpixels on a given segmentation computed and stored in object 
  gt > (GT) Greater than relation for handles. 
Sealed   isvalid Test handle validity. 
  iterate Calculates the superpixel segmentation on a given image with the initialized parameters in the object 
  le <= (LE) Less than or equal relation for handles. 
  load Loads algorithm from a file or a string 
  lt < (LT) Less than relation for handles. 
  ne ~= (NE) Not equal relation for handles. 
  notify Notify listeners of event. 
  save Saves the algorithm parameters to a file