MATLAB File Help: cv.StructuredEdgeDetection/StructuredEdgeDetection | Index |
The only constructor
obj = cv.StructuredEdgeDetection(model)
obj = cv.StructuredEdgeDetection(model, howToGetFeatures)
The following is an example of a custom feature extractor MATLAB function:
% This function extracts feature channels from src. The
% StructureEdgeDetection uses this feature space to detect
% edges.
function features = myRFFeatureGetter(src, opts)
% src: source image to extract features
% features: output n-channel floating-point feature matrix
% opts: struct of options
gnrmRad = opts.gradientNormalizationRadius;
gsmthRad = opts.gradientSmoothingRadius;
shrink = opts.shrinkNumber;
outNum = opts.numberOfOutputChannels;
gradNum = opts.numberOfGradientOrientations;
nsize = [size(src,1) size(src,2)] ./ shrink;
features = zeros([nsize outNum], 'single');
% ... here your feature extraction code
end
TODO: Custom extractor is not internally used in the current cv.StructuredEdgeDetection implementation. See http://docs.opencv.org/3.1.0/d2/d59/tutorial_ximgproc_training.html for more information about training your own structured forest (it uses an external MATLAB toolbox for the training part).