MATLAB File Help: cv.normalize | Index |
Normalizes the norm or value range of an array
dst = cv.normalize(src)
dst = cv.normalize(..., 'OptionName', optionValue, ...)
src
. See DType
option.src
;
otherwise, it has the same number of channels as src
and the
specified depth (a numeric class name: 'uint8', 'double', etc...).
default -1dst
when
Mask
is used. Not set by default.The functions cv.normalize scale and shift the input array elements so that:
||dst||_Lp = alpha
(where p
=Inf, 1 or 2) when NormType
='Inf', 'L1', or 'L2', respectively;
or so that:
min(dst) = alpha, max(dst) = beta
when NormType
='MinMax' (for dense arrays only). The optional Mask
specifies a sub-array to be normalized. This means that the norm or min-max
are calculated over the sub-array, and then this sub-array is modified to be
normalized. If you want to only use the mask to calculate the norm or
min-max but modify the whole array, you can use cv.norm and Mat::convertTo.
Possible usage with some positive example data:
positiveData = [2.0, 8.0, 10.0];
% Norm to probability (total count)
% sum(numbers) = 20.0
% 2.0 0.1 (2.0/20.0)
% 8.0 0.4 (8.0/20.0)
% 10.0 0.5 (10.0/20.0)
normalizedData_l1 = cv.normalize(positiveData, 'NormType','L1');
% Norm to unit vector: ||positiveData|| = 1.0
% 2.0 0.15
% 8.0 0.62
% 10.0 0.77
normalizedData_l2 = cv.normalize(positiveData, 'NormType','L2');
% Norm to max element
% 2.0 0.2 (2.0/10.0)
% 8.0 0.8 (8.0/10.0)
% 10.0 1.0 (10.0/10.0)
normalizedData_inf = cv.normalize(positiveData, 'NormType','Inf');
% Norm to range [0.0;1.0]
% 2.0 0.0 (shift to left border)
% 8.0 0.75 (6.0/8.0)
% 10.0 1.0 (shift to right border)
normalizedData_minmax = cv.normalize(positiveData, 'NormType','MinMax');